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ABSTRACT

In this paper, the authors considered the problem of estimation of

the frequencies and the number of signals under a signal processing model

with multiple sinusoids. The frequencies are estimated with eigenvariation

linear prediction method. The number of signals is estimated with an in-

formation theoretic criterion. The strong consistency of the estimates of

the frequencies and the number of signals is also established. Also, a

modification of forward backward linear prediction method is suggested to

yield consistent estimators of the frequencies.
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1. INTRODUCTION

Consider the model

to
y(n) = I akexp(iwkn) + w(n), n = 1,2, ...,N (1.1)

k=l

where ak # 0 are unknown amplitudes, wk e (0,27 ), (k = 1,2, ...,t0), are

unknown frequencies and i = T. Usually we assume that the noise w(n) has

mean zero and finite variance a2. The above model is of interest in tne

area of signal processing. Under the above model, it is of interest to

estimate the unknown parameters. Even when t0 is known, it is difficult

to find the least square estimaLes of ak's and wk's since it would involve

solving a system of nonlinear equations with exponential functions. To

avoid this difficulty, various methods have been developed in the literature,

such as linear prediction (LP) method, those based upon using principal

eigenvectors of estimated cross-spectral density matrices (Liggett (1973))

and the forward-backward linear prediction (FBLP) method (Nuttall (1976)

and Ulrych and Clayton (1976)).

In the LP procedure, we have still to solve a polynomial equation whose

degree would be rather high although we do not solve a system of exponential

equations. Also, it does not work well for the case of low signal-to-noise

ratio (SNR). Tufts and Kumaresan (1982) made modification to the original

FBLP method, and showed by simulation that the modified FBLP works

much better than the original FBLP when the SNR is relatively low. However,

it still involves solving a high degree polynomial equation.

In the present paper, we investigate the estimation of both the

number of signals and the amplitudes and frequencies of the signals, and

study a method which we refer to as equivariation linear prediction

-, 'w -" ' , 'L. " _-v, .' ' .' " , " -' ' ' " ' ' " .I'
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(EVLP). Using this approach, we can at the same time find the estimates of

number of signals and the frequencies and then using the usual least square

method to get the estimates of the amplitudes. In this method, we need only

to solve a polynomial equation with the lowest degree. In Section 2 we

shall state this method. In Section 3 we shall prove the strong consistency

of this procedure. In Section 4 we give the limiting distribution of vari-

ous estimates, given in previous sections. In Section 5 we qive a further

discussion on the FBLP and the modified one. In this section we will show

the reason why (theoretically) the modified FBLP works better than the

original one when the SNR is relatively low and the sample size is small,

and show that these two methods will become equivalent when the sample size

goes to infinity. More importantly, we shall point out that both these two

methods do not provide consistant estimation of the frequencies, and we

shall pose a further modification on FBLP such that the procedure is con-

sistent.

-S

4.. " % " "- °- .' '- .' '" , ". " " . ".
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2. DETERMINATION OF THE NUMBER OF THE FREQUENCIES

AND ESTIMATION OF THE FREQUENCY PARAMETERS

Suppose that the data sequence y(n) is given by the formulas

to

y(n) = j l aj exp(iwin) + w(n), n = 1, 2, ..., N, (2.1)

where i = T, {a.} is a set of unknown complex amplitudes, {wj} is a set

of unknown angular frequencies, and {w(n)} is a sequence of i.i.d. complex

random noise variables such that

2 4

Ew(l) = 0, Ew(1)w-T = , Ejw(l)j < (2.2)

with a2 unknown. We assume that wj t wk if j k, and wj e (0,27) for all j.

In this paper, we are primarily interested in determining to and esti-

mating the frequency parameters wj. Once wj's are accurately determined,

the a.'s can be found by a linear least squares fit to the data.

To determine to, the true number of different angular frequencies, it

is prescribed a prior that t0 < T < c.

For any nonnegative integer t < T, write complex vector b(t) as

b(t)= (b(t) , b(t)). (2.3)b 0 '*~ t

Put*

St min{f t  X X b t y n _ )j12 11b(t) 1 1
Ntn~t+l Z:0

t 0 0, 1,2, ... ,T, (2.4)

Rao (1986) also remarked about finding St , for given t, to estimate the

frequencies.

N % N



5

where It b(t)2)/2. Take CN satisfying the following condi-
Z=0 9

tions:

lim CN = 0 and limv7NCN/1oglogN = . (2.5)
N-N--

Then we can find a nonnegative integer t0 = tN < T which minimize

Rt = St + tCNI t = 0,, ... , T, (2.6)

and use to as an estimate of to.

Further, we can find a unit ( +l)xl complex vector (bo' ..."'b 0

I N t 02
S _ ^ L. 1 1 b9y(n- )l2 (2.7)to N-t N=t +1 =0

Let ijexp(iwj), j = 1,...,t be the t 0 solutions of

§(Z) 1 b 0, (2.F)
j=0

where j> 0, e [0,2Tr), j =l, ..., 0* Then we use wj's as estimates of

Wj IS.

Note that if G(t) satisfies

=1 N t (t)

St - N-tn I I b y(n-2)f 2 , t 0, , ...,T, (2.9)
n=t+l Z=0

then St is the smallest eigenvalue of the matrix

r ) ^(t)) ,m: O, 1 t (2.10)

Zm

and 5()is the corresponding unit eigenvector, where
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t) 1 N (2

N-t I y(n- )y(n-m), Zm = o, I, ... , t. (2.11)n=t+l

The above method combines the procedure of parameter estimation with

the detection procedure of the parameter number. As shown in Section 3,

(to' Wij j < tO}) is a strong consistent estimate of (t , {W, j < to )

under the condition (2.2). Besides, as an estimate of a , S 0 is also

strongly consistent. In Section 4, we obtain the limiting distributions

of S O and {wj, j < to } -

~:

',. . ' , / . . , ,. ., , : . , .. , .- ." " -** .. V .*" *" J ., -, " " " ". ". ", , " . "." ".' '." - " * . .' - . , .' - '. - - ,' - - , . ,, .-. , , '.- . -
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3. STRONG CONSISTENCY OF THE DETECTION AND ESTIMATION PROCEDURES

In this section, we establish the following.

THEOREM 3.1. Suppose that {w(n)} is an i.i.d. sequence such that (2.2)

holds. Then with probability one for N large, the following results hold:

(i) tN = to,

(ii) there exist a unique (t +1) xl unit vector b (up to a complex

factor with modular one) which satisfies (2.7), and

(iii) for appropriate ordering,
2

j .j, j = , t o  Si , as N - .

In other words, (ti0 % {j'I j tO}, Si) is a strongly consistent estimate of

(to$ { j, j < t O}, 2)

To prove this theorem, we need the following lemma:

LEMMA 3.1 (Petrov). Let {Xn , n > 1} be a sequence of independent realn n
random variables with zero means. Write s EX and S n jl if

n jl n

lim inf s2/n > 0
n-c n

and

EIXIl 2+ 5 < K < a, j > 1

for some constants K and 6 > o, then
2 s2 /

lim sup S /(2s log(s ))1 2 = 1, a.s.
n- n n n

For'a proof, the reader is referred to Petrov (1975) and Stout (1974, p.274).
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Proof' of' Theorem 3.1. Under the model (2.1), we have

k'm - ~~y(n-z)yn-m
n= t+ 1

N __0t

N-t a C aexp(i(n-z)w.) + w(n-z))( 7 a.exp(-i(n-m)wj) + w~n-m))

to0 to 0 N
x IaI iiexp(i(m-z)w. + x a -a k expim k-kj)-f- exp(in( w.-w)

j=1 l j,k=l,jftk n=t+i

to N____
+ Y a exp(i (m- Ow.) t exp(i(n-m)w.)wnm
j1 l n=t+1 5

to0
+ e x m ).N--exp(i(-~j~~-,

n3=~

N

j +j 2N + j 3N + j 4N + i 5N (say), z, m = 0, 1, ., t. (3.2)

For w. wk' k,

1x~i N j-wkk) 0( 1)
Ntn=t+1 j) (N-t)(l exp(i(w j-wk)))N

Thus

By condition (2.2) and Lemma 3.1,

i N 0(/To o ) a.s., 0(, a.s. (3.4)
N 34NN

as N -
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By the law of the iterated logarithm of M-dependence sequence,

o log log N) for x m

5N = a.s. (3.5)

2 + o( !lologN) for =m,

Let

r(t) = (Ym(t)), (t) = 2m + j aj 2exp(i(m-2.)wJ)

,m~ o , ... ,t, (3.6)

where 69m is the Kronecker sign.

Using (3.2)-(3.6),

m = Y  + 0 a.s., Zm=O,l, ...,t. (3.7)
m m V oN)

Let (t) be the eigenvalues of r(t) and It) >(t) be
Le )> . t+l 1 >-"" >  t+l

the eigenvalues of r(t). Then

t+l >^(t) > tr (t )

(see von Neumann (1937)). Hence,

t+l
I ( (t)_ (t))2 t tr(r _ r(t))2. (3.8)
= j j

t

Put

1 ... 1
exp(-iw1) ... exp(-iwt)

to A = diag[a I  a 2 9 .. .

(t+l)x to  ...... ... ' 1 2

exp(-i tl) ... exp (- itwto0 (3.9)



10

Since a. 0, j = 1, , t0, and j if j k, it is easily seen that

rank(fA) = min(t+l, t0), (3.10)

r(t) = 02It+1 + WA**, (3.11)

and Q* denotes the transpose of the complex conjugate of Q. Thus

(t) > a for t < to 9t+ 1

X(t) = a2 for t > t. (3.12)
t+l

Hence, by (3.7) and (3.8), noticing that St (t) we have

.(t)1

lim St : At+) > 02 a.s. for t < to , (3.13)

and

Ist 1 0 olog1 N). a.s. for t > t O. (3.14)

Assume that t < to. Then by (3.13), (3.14), (2.6) and (2.5),

lim(R - R) 2 - (t) < O, a.s. (3.15)
N-).- o 0 t+1

Hence, with probability one for N large

R < Rt ,  for t < t. (3.16)

Now we assume that t > to. Then by (3.14), (2.6) and (2.5), with

probability one for N large, 4

NO

'p,
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Rt -t St - (t-to)CN

: O( oNgN) - (t-to)CN < 0. (3.17)

Hence, with probability one for N large,

tN = to$ (3.18)

which establishes (i).

To prove (ii) and (iii), without loss of generality, we can assume

to= to. By (3.10) and (3.11) with t = to,

2 (to) (to) (t0 )

= Xto+l < Xto .. < (3.19)

Thus, the equation

(to)
(r - a'ItoGl )b = 0, IbI = 1 (3.20)

has a unique root b = (bO, bl, ..., bt )' (up to a complex factor with modular
A 0

one). By (2.7), b is a unit eigenvector corresponding to the smallest eigen-': (t0) ^(t0 ) -

S to+1 of r By (3.7), (3.8) and (3.19), with probability one for N large,
t0+

^(tO ) j(t0) ^(t 0 )Xto+1 < to < A. l  ,(3.21)

which implies that the equation

t) 0(tO )
- 0oIt+1 )b 0, + 1 (3.22)

has a unique root b =(b b ., )' (up to a complex factor with modular
has N u0
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one), and, with appropriate choice of this factor, we have

lim b = b, a.s. (3.23)

Now, choose b - (bO, b, ... , b to)' such that I1il = 1 and

to

B(z) b z = 0 (3.24)
X=0

has t0 roots exp(i w),exp(iw2), ... , exp(iwt ). Then b is the unique root

of equation (3.20) (up to a complex factor with modular one) and vice-versa.

Using (3.23),

lim B(z) = B(z), a.s. (3.25)

Now, use the definition of pjexp(i j), j = 1, ...,to, for appropriate

ordering,

lim 6jexp(i2j) = exp(iwj), a.s., for j 1,...,t o ,
N- J

which implies

lim W. = j, a.s., for j = 1, ...,to. (3.26)

Using (3.14), we establish parts (ii) and (iii) of the theorem.

Remark. The EVLP method can be easily generalized to EVFBLP along a

similar line. The anoloques of the results qiven in this section and the

next section can be proved step by step as the proof given in these two

sections. Also, we can expect EVFBLP to give more accuracy when SNR is

high and the sample size is small.

,p
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4. LIMITING DISTRIBUTION OF Si 0 AND (sj, j < to)

Since t0 -- tol a.s., as N + , we can use t0 instead of t0 when we

consider the limiting properties of various estimates involving t0. For

further simplicity of notation, we will omit the subscript 0 of t0 and sim-

ply use t for to. Also, we will keep all other notation defined in pre-

vious sections. In particular, the matrix Q in (3.9) is a (t+l)xt matrix.

Throughout this section, we assume that {w(n)} is a sequence of i.i.d.

complex random variables such that

Ew(l) = 0, E(Rw(l))2  E(lw(1)) 2  T 2

E(Rw(l)Iw(l)) = 0, and Var(lw(l)l 2) = ao4 with a > 0. (4.1)

Here, Rw(l) and Iw(l) denote the real and imaginary parts of w(l) respec-

tively.

LEMMA 4.1. Suppose that condition (4.1) is satisfied. Then

1 N exp(-i(n- z)j)w(n-i) - v., j=l,2, ... ,t, z=O,l, ... ,t

44-tn=t+l

I N 2_2 DI N (jw(n - )Z ) IP uO ,  Z=O' 1, . ,t,

/N- t n=t+l

1 N D_- X w(n - z)wn -- m) - u _m, if 0 < m < 9 < t.
A't n=t+l - -

Here vj's and uj's are independent of each other and

(i) v. - N (O,a ), j =3 C

(ii) uo 0 Nr(O, C 4),
(iii) uj N c (O,04) j =  ,. . .(4.2)

-- --- " ";,-4

IP +.JTI .! I+ I ,q" I3I cl+{ r+ I rr l l~, F. I . , -£ + I . ' I+ + -
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Also, Nc and Nr denote complex and real normal distribution respectively.

Proof. The normality of vi, u0 and u. follows directly from the cen-

tral limit theorem by computing the covariance matrix and the fact that

1 exp(inw) -0 for any w O.
nil

Put

A = diag[a l , ..., at],

I ... I

exp(-iw1 ) ... exp(-Liwt)

(t+l)xt

Sxp(-it l)  ... exp(-itwt)

u u

U . " • (4.3)(t+l)x(t+l) .

ut .. ut 1 0 l U

CN = --t(St- 2 ) TNj = Vt(p j-l), ANj = N-t-t(j-j) '

T n (T, ...,TT)' and = (6I "".A)'in = N19..l Nt _N Ni9 .. 'Nt

t t
Define B(z) = bt IT (z-exp(i))= jobzwhere bt is chosen such that

j=l

1!bil = 1 for b = (bo, b1 , ...,bt)'. Write

D(exp(iw)) = -i d-B(exp(i), and

G = diag[D(exp(iw1 )), ...,D(exp(iwt))]. (4.4)

,-,

,-
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We have the following result:

THEOREM 4.1. Suppose that {w(n)} is a i.i.d. sequence of complex

random variables such that (4.1) holds. Then we have

N b*Ub, (4.5)

and

TN + iAN ) G-I(AA*)-( * )1 Q*Ub. (4.6)

Proof. Put V = diag[v l , ..., vt] and

H A-- (r(t)_ ((t)) : (hm). (4.7)

By (3.2), (3.3) and Lemma 4.1, we have

- H = (hm) : Q(AV+AV)R* + U. (4.8)

Since St is the smallest eigenvalue of r(t), we have

0 = det[r(t) - S t It+ ]

= det[r (t)- 21 t+l + 1 - (St - 2 )I t+l]

= det[AA*s* +_ (S t  2)it+l" (4.9)

Let Q be a unitary matrix such that

Q*QAA*Q*Q =  diag[E, , . .., tO], l > ... > t >  0.

Note that the last column of Q is the eigenvector of r(t) corresponding to

the eigenvalue 2 of F(t) We can choose this column as b. Now we have

Pt~

' % ' ,' ', % jG , . , . . \ -.. , - .. ,., ., ,,.,. >
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0=det< t 4l)"
22

.(St-o ) t

Since H H, by Skorohod's representation theorem (see [7]),

we can assume H 0 H, a.s. as N - . Multiply by (N-t)I/4 the last

row and the last column of the matrix in { I of (4.10) respectively. By
2 '

(4.10), St ) a , a.s. and noting that O*b 0 0, we have

N = b*Hb = b*Ub, a.s. (4.11)
.%

Note that (4.11) reveals only that there exist some versions of CN' '

H and U which have the same distributions as ,N' C, H and U respectively

such that (4.11) holds. From this we only get (4.5). The principle of

this statement also applies to the following proof of (4.6) and so on.

Since (;(t) Stlt+l) = 0 and (r t) 21l)b = 0 with the choice of

such that b b a.s., we have

0 : (6(t) _ StlIt+l)/

0= 4,T~(t) 2

(r~)" In + (H) H I  b -b+
t+l t - t+ l - N

.(t) 2 A

't+l),IN N H I t~ b+ (H - N t '

where 2N = --t0b) " n412'

9N -N n such th 1) (2))

Write n (1) + (2) suhtat 2N~l e w(2) and (2) 4~(s), where
N N -N -N

% %u
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P(Q) denote the space spanned by all column vectors of Q. Then n ) RN

for some txl complex vector BN' Since H H, a.s., N +U = *Ub, a.s.

and b b, a.s., we have

(H- NIt+l)(b -b) 0, a.s. as N (4.13)

Note that

(r(t) -2t+l 2N = QAA*nN = WAA*s*.n1) = sAA*Q*siN (4.14)

and

(H-cNIt+l)b , (H- It+l)b = Ub - (b*Ub)b

N t~ltt+ = (It+,-bb*)Ub, a.s. (4.15)

By (4.12)-(4.15), and It+,- bb* = )I * , we get

N - -(n)1(AA*) 1(Q*S)'I1*ub, a.s.

which implies that

() _ (Q*)-I Qub a.s. (4.16)

Hence

Q*nN = n l) -(AA*) "l(Q*Q)-1 *Ub , a.s. (4.17)

Finally, let us consider the limiting distribution of AN. Since

^'(^".exp(i =.B(exp(iwj)) = 0, we have for j I , t,B 3ex ( 3,) =.3,. .

*1
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t0 = ff Ib p~exp(iz j

t

= vff I (bz+bz-bz ){exp(izwj) + (pj-l)exp(i.j) + (exp(i ij)-exp(izw))}
k=0

t + t 9 -I:=:0 IN exp(iwJ) + I b Z0 *-  T exp(i2J) + in exp(izwJ*)},

where pj, e [l,pj] or [pj,{] and wj, e [,j] or [ j,wj]. We have

proved that b - b, a.s., pj -* 1, a.s. and w. -* Wj, a.s. for appropriate

ordering and for j = 1,..., t, so that, with probability one, we have

Q*N2N + G(TN+i iN) + o(!INII + 1II N) = o (4.18)

for large N. Since exp(iwj) is a simple root of the multinomial B(z), we

have D(exp(iwj)) 0 for j = 1,2, ...,t, and G is nonsingular. From this,

and (4.17)-(4.18), it follows that

1N + i N - G-1 (AA*)-l(Q*l)'l1*Ub, a.s. (4.19)

As mentioned above, this only gives the corresponding weak convergence

described in (4.6). This completes the proof of Theorem 4.1.

.V N,9 **1 %* %
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5. FURTHER DISCUSSION ON MODIFIED FBLP METHOD

Consider the model (2.1) and suppose that (4.1) holds. In this section

we discuss the problem of estimating the frequencies when t0 is known. It

is emphasized that some of the notations of this section may be different

from those of the previous sections.

Nutall (1976) and Ulrych and Clayton (1976) developed the method of

forward-backward linear prediction (FBLP), which works well when the signal-

to-noise ratio (SNR) is sufficiently high. However, it becomes false in

the case of low SNR. Tufts and Kumaresan (1982) proposed a modified FBLP

(MFBLP) method. They showed by simulation, that the estimation of the

frequencies has been greatly improved by MFBLP when the SNR is relatively

low. In this section we shall give a theoretical analysis to show why the

MFBLP improves when SNR is low and the sample size is large. Also, we

shall suggest a further modification to this method.

First, let us describe the FBLP procedure. The reader should note

that it is assumed that the true number of signals is known in this procedure.

The linear prediction coefficient vector b(t) (t tO ) is defined as the

one which minimizes

N t N-t t
Z jY(n) + b (t)y(n- )j2 + I y*(n) + b(t)y*(n+z)i2, (5.1)

n=t+l =l n=l 9=1

where (t), z = 1,2, ... ,t, are the components of (t).
9,

In case the solution is not unique, we select the one which also mini-

mizes

zt i (t)1 2 (5.2)

th sti (t)

In light of this, we call the solution b least normed prediction (LNP)

V N.



20

coefficient vector.

We can construct the transfer function of the prediction error filter

B0)(Z) :l+ btz-z (5.3)

Let i(t)exp(it)), i(t) > 0, it) e [0,2Tr), = 1,2,..., to be the first

t roots of '(tz) which are closest to the unit circle in the complex

plane among the t roots, and take (t), 2 - 1,2, .. , t as the estimates of

2IS.

To introduce the !1FCLP method, write

y(t), y(t-l), ..., $ y(1

y(t+l), y(t), ..., y(2)

= y(N-1), y(N-2), ..., y(N-t)

y*(2), y*(3), .... y*(t+l)

y*(3), y*(4), .. y*(t+2)

y*(N-t+l), y*(N-t+2), .Q.' y*(N)

(t) (t)

t

and

h (y(t+l), y(t+2), ... , Y(N), y*(l), *.., N-t))'

5 U ' * S *.~ S -
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It is well-known that the LNP is

,' : (5 .4)

where (Y*y)+ denotes the Moore-Penrose inverse of (Y'Y).

Now, let (2N-2t)-lY*Y have the following spectral decomposition

t
(2N-2t)- * = Y Ajuju. (5.5)j~l " -

As shown in the sequel, with probability one for large N, the above matrix

is positive definite. Hence, the FBLP gives the LNP as follows:

rt j:l ~( )6J' (5.6)

where

= •h (5.7)

If we use
to

j x. Y (uy.(58
" j~l )J

instead of b(t) in the above FBLP procedure, we get the MFBLP method.

In this section, we propose to use

-~ t -3 -. 30
to  A - l(ut )6- t > tO9 (5.9)
j = l " " j - _

instead of b* in the MFBLP procedure. We will establish the strong consis-

tency of the estimates of the frequencies for this method under the condi-

tion (4.1).

Now, we consider the case without noise. To distinguish this case from
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the case with noise, we drop out the superscript "," in all notations.

Write

a1exp(itw I), ... at exp(it t

aexp(i(t+l) wl ), ..., at exp(i(t+l)w t

aiexp(i(N-I)wI), ..., atoexp(i(N-)w to)

Q= ( Texp(-2i, )O, ..., atoexp(-2iwt)

o 0aIep(-3iw I ) ,  ..., atoe~Xp( 3wto

o 0an 1 le x p (- i (N-t+l)wl)' ..., a toeXp(-i (N-t+l)w to

and

1 exp(-iwl) ... exp(-i(t-l)wl)

I exp(-iw 2) ... exp(-i(t-l)w 2)

• ... . .

I exp(-iw to ... exp(-i (t-l) to)/

Then

Y = Q (5.10)

and

h = QQ0, (5.11)

where Q0 = (exp(iwI), ... , exp(iwt '

Substituting (5.10), (5.11) into (5.4), we get

b(t) = _ (5.12)

, r w- " . ,r " . € .r wr m ".% . -" " . ." ." '. . . . 'w'-.- ,- - . .- .- . ' .- ' " '.m w ' '.-".. .- ' ". ".' '
-
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Note that Q and s2 have rank to. By simple computation we find

b(t) = *o" (5.13)

Let B(t)(z) be the function constructed according (5.3) with the vector b(t)

It is easy to verify that B(t)(exp(iwk)) = 0, Y = 1,2, ..., to. It is

interesting that the LNP, in the noiseless case, is independent of the

amplitudes.

Next, we shall consider the case when the noise arises. Let

w(t), w(t-l), ... , w(2)

w(t+l), w(t), .. , w(2)

W = w(N-l), w(N-2), ..., w(N-t)

w*(2), w*(3), .. , w*(t+l)

w*(3), w*(4), . w*(t+2)

w*(N-t+l), w*(N-t+2),... w*(N)

and

W0 = [w(t+l), w(t+2), ..., w(N), w*(l), w*(2), ... , w*(N-t)]'.

Then we have

V = Q + W (5.14)

and

= h Q + Wa0 (5.15)

*~- - -01j
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By (5.14) we have

Y*Y = Q*Q*QQ + W*QQ + 2*Q*w + W*W. (5.16)

Under the conditions of Theorem 4.1, we can similarly prove that

(2N- 2t)-Iw*Qsi + l*Q*W} = O(/NoglogN), a.s. (5.17)

and

(2N-2t)'IW*W- 2 1t = O(/TloglogN), a.s. (5.18)

Hence

(2N-2t)'IYY (2N-2t)-Q*Q*Qo + o2It + O(/-Nlog logN), a.s. (5.19)

Similarly we can prove

(2N-2t)lY*h = (2N-2t)-I2*Q*Qso + Q(/gloglogN), a.s. (5.20)

Put

2 2
A = diag[ja12 lato0 2].

It is easily seen that

(2N- 2t)- Q*Q = A + 0(1), (5.21)

and

(2N- 2t)-1 *Q*Qo = Q*AQ + 0(1),

(2N- 2t)0 Q*Q*Qo =*Ao + 0(1). (5.22)

Therefore,

(2N-2t-1Y*Y = Q*A + o21 t + 0(! loglogN), a.s. (5.23)

and
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(2N-2t)y*h = s*Ao + O( 1 1ogogN), a.s. (5.24)

Note that b(t) is independent of N in view of (5.13). Hence, by (5.12) and

(5.22) we get

b (t) :_(*a 9A

: (O*AQ)+a. (5.25)

Here we have

-Q =  *A 0. (5.26)

Note that the rank of the tx t matrix s*AQ is to. So the matrix Q*AQ has

the following spectral decomposition

to
Q*AS = j (5.27)

j=1 J

where l > C2 > ... > t0 are the non-zero eigenvalues of Q*A2, and vj's are

the corresponding eigenvectors.

Applying Lemma 2.1 in Bai-Krishnaiah-Zhao (1985), by (5.23), we obtain

= + o2 + O( v loglogN), a.s., for i < to *

j= ,2 + O( A l-1ogogN), a.s., for j = t 0 +l, ... ,t. (5.28)

By (5.5), (5.23), (5.27) and (5.28), we get

t 2to
j ('N-o2 )6u: : j .VV + O(/IoglogN), a.s.

to to

Sc = .,..vt + O(--og- lgN) a.s. (5.29)

j=l j=: 
N( 

. 9
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and t o  to

A.U.U, + a I u.u (j + )vjv
j=l J~~ j=t 0+l

J 3J  j=l

+ a2 t ~ * N ,

vtl ,! + 0 og ogN ) a.s. (5.30)
j=t 0 +l -3J N

Take vi, j = t0+1, ...,t as the rest unit eigenvectors of O*AQ such that
vv = 0 for j 9 , j,= l, t. Put

- .019 •.. , tU+1 .
1  = , 2  = -- t '

txt 0  tx(t-t0 )

V V 2 = (V to+l ,...,vt),
tXto 0 tx(t-t0 )

and

U2  = V1 G1N + V2  G2NI

tx(t-t0 ) txt0  tx(t-t 0)

where G1N and G2N are tO x (t-t0) and (t-tO) x(t-t0 ) matrices respectively.

By (5.29),

to

C c (jU*,0( 1 o(!l), a.s. for k=to+l, ...It.L j: i - J ~k N 0 '

Thus

O*V2= o( og9 og N), a.s. (5.31)
1 2 V N

By (5.30) and (5.31),

av2 u v2 : 021t-to + O(I °I, a.s. (5.32)

Thus

", " " • "• "," #W:,' " " ", , , , • • , '" -, -,r -uI
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G2 NG*N =I + N a.s.
N 2N N(5.33)

G*NG2N = Ito + O(!I og log N as

t 2N) a.s.

Similar to (5.31), we have

VU 2 = Oa.s. (5.34)

which implies that

GiN O( I9-g") a.s. (5.35)

From the above argument, it follows that

t u*=UU= V2V + O(
j=t+ J 2 2 22

0
= 0+ l  + 0( og ogN (5.36)

N a.s. (.6

t tJ~o~ vj ~Q& 2 l~oN ), a.s. (5.37)

j=t 0 +l 
0

and

t .-l -2_____(.8
x 6 ^ + 0( 2  ogIogN a.s. (5.38)

j=to+l j  j=to+ l fJ -J  N

Here we write the factor a-2 in the remainder in order to compare the above

methods in the sequel. Using similar argument, we can prove that

Sto 1. to0 2- lo o
0jX-j : X ( j+2)-1v) v + o( og a.s. (5.39)

j=l ' j=l j f N

and

0 o I / log N(X A= j :I . v.v. + O( /1 N) a.s. (5.40)

4- - .,..~. .4 *,* .FP. J~* . -.- - i Vf N I* * *~~* I ~ ~ ~ ~ .
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By (5.7), (5.24) and (5.26),

. : _ + 0( N ) a.s. (5.41)

Note that by (5.25) and (5.27), we see that

I Cj(v')vj (o*As)+8 = b(t). (5.42)
j=l -j-

By (5.27), we have

V0*AQ = 0, and V**A 0 0. (5.43)

From this and a = -Q*AQ, it follows that

t
I (vta)v. : 0. (5.44)

j=t0+1 -j- -

Thus, by (5.6), (5.8), (5.9), (5.38)-(5.42) and (5.44), we have

b~) to O /I

b = 1 (j+a 2) -l(v )v. + O( -2 log 1ogN a.s. (5.45)
j=l V N

-. to 2 ___

= Z (C + (Vj- )vj + 0( ) , a.s. (5.46)
j=l

and
b= b(t) + ( og ogN a.s. (5.47)

t 
RPut 69 ... b (b bt)', B(z) 1 + bz -  and let exp(i ,

I1,2, ... ,t, be the roots of 6(z), where p > P2 > pt " > 0. As

pointed out earlier, wi, j = 1,. ..',tO, are the roots of B t)(z). Kumaresan

(1982) has shown that the particular choice of b(t) places the t- to extraneous
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zeros of the prediction-error filter transfer function BMt(z) inside

of the unit circle. Thus, by (5.47) we obtain that for appropriate order-

ing of Uig,...,2 to,9

Aj= + O(.log log N)
+N , a.s. for j=l, ...,to, (5.48)

which implies the strong consistency of the third method by us.

By (5.45) and (5.46), we see that the FBLP procedure and the MFBLP

procedure have the same asymptotic behavior.

Denote by B(z) the transfer function constructed according to (5.3)

tt to 2 1
with b t ) replaced by I (j + a )- (vu)v' In the same way, we can con-

* j=l ~ - *

struct B,(z) using b, instead of (t) in (5.3). By (5.46) we know that

B,(exp(iwj)) = i(exp(iwj)) + 0(/ N a.s. (5.49)

for j=l, ...,tO. In general, B(exp(iwj)) B(t)(exp(iwj)) = 0 for

j=1, ...,t0 in view of (5.42), so that MFBLP method is not consistent.

But we know that B(z) reduces to B(t)(z) when a2 = 0. Thus when a2 is small

enough (with respect to 'j, j = 1, ...,t0 ), B(exp(ij)) = 0 and B,(exp(ij))

A 0 for j=1,2,...,tO.

In the same way,

(t)(exp(iwj)) = B(exp(iwj)) + 0(0 2 Ng) a.s. (5.50)

2.

for j = 1, ..., to. When 2 is small, the main term of the above expression

B(exp(iwj)) 0 for j < tO. This means that when 2 is small and fixed,

the FBLP procedure can estimate the true frequencies well in the large

sample case. However, when N is not large, the remainder in (5.50) would

-. 0 *.' "e " P5,e -
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bring much random effect on the zeros of the prediction-error filter

transfer function B(t)(z). As shown by the simulation results given in

Fig. 4 and Fig. 5 in Tufts and Kumaresan's paper (1982), the main random

effect is imposed on the t-to extraneous zeros of B(t)(z). If we drop
t -j to + )jjj- when we construct the transfer function, as done by TuftsJ=to+l ~

and Kumaresan, the estimates of the true frequencies certainly can be im-

proved. This is why the MFSLP procedure is better than the FBLP procedure,

as shown by the above simulation results.

Thus, we establish the following.

THEOREM 5.1. Suppose that (4.1) holds in the model (2.1). For the

third procedure proposed by us in this section, and for appropriate order-

ing of i ... Wto we have

j .Wj + 0(/ N), a.s.

for 1, t 0*

I
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